
  

 

  

 

 

Automated analysis of transmission electron micrographs of 

metallic nanoparticles by machine learning 
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Metallic nanoparticles were analysed with respect to size and shape by a machine learning approach. This involved a 

separation of particles from the background (segmentation), a separation of overlapping particles, and the identification of 

individual particles. An algorithm to separate overlapping particles, based on ultimate erosion of convex shapes (UECS), was 

implemented. Finally, particle properties like size, circularity, equivalent diameter, and Feret diameter were computed for 

each particle of the whole particle population. Thus, particle size distributions can be easily created based on the various 

parameters. However, strongly overlapping particles are difficult and sometimes impossible to separate because of an a 

priori unknown shape of a particle that is partially lying in the shadow of another particle. The program is able to extract 

information from a sequence of images of the same sample, thereby increasing the number of analysed nanoparticles to 

several thousands. The machine learning approach is well-suited to identify particles at only limited particle-to-background 

contrast as it is demonstrated for ultrasmall gold nanoparticles (2 nm). 

Introduction 

Nanoparticles play a key role in materials science. As most 

nanoparticle properties depend on the particle size and size 

distribution, it is usually necessary to fully characterize a given 

set of particles. Many methods are available that give particle 

size distribution data, both in solid form (as powder) and in 

dispersed form.1-6 However, shape-related parameters are 

usually only accessible by microscopic techniques. In that case, 

electron microscopy is the method of choice because light 

microscopy usually does not provide a sufficient resolution.  

For the application of nanoparticles and (nano-)fibres, e.g. in 

consumer products, cosmetics, drugs, or in heterogeneous 

catalysis, the particle shape plays a decisive role.7-11 In 

occupational medicine and particle toxicology, rod-like 

(nano)particles are considered to be potentially more harmful, 

based on the case of asbestos where fibres cause strongly 

adverse effects upon inhalation.12-14 Thus, nanoparticle 

populations are usually visualized by electron microscopy, 

followed by an extraction of their individual size- and shape-

related properties. 

A detailed analysis of electron micrographs of nanoparticles is 

often performed manually by human evaluators. This procedure 

is tedious, time-consuming, and inaccurate. It may also involve 

a considerable degree of human bias due to an unconscious 

selection of "typical" nanoparticles, e.g. particles with the 

"expected" size or the "desired" uniform shape. In the 

literature, claims of allegedly uniform nanoparticle populations 

after shape-specific syntheses, based on only a dozen depicted 

nanoparticles, are not uncommon. 

Computational methods for detecting and analysing 

micrographs of nanoparticles do exist, however for many of 

them a considerable degree of manual input and fine-tuning of 

parameters is needed. Furthermore, many of these techniques 

fail for images with a low signal-to-noise ratio as it is the case 

for some high-resolution TEM images and images acquired with 

low beam intensity.15, 16 

Clearly, an objective method for a rapid nanoparticle analysis 

from electron microscopic data is necessary. The rise of artificial 

intelligence/machine learning/deep learning has considerably 

enhanced our ability to train computers to recognize and 

autonomously analyse particles. Machine learning techniques 

have already been applied to electron microscopic images 

where they usually outperform classical image analysis 

approaches, especially when noisy images or overlapping 

particles are involved15, 17-24 (see refs.25-27 for recent reviews).  

Here we present an automated method, based on machine 

learning, that permits to analyse electron microscopic images 

containing thousands of nanoparticles within a few seconds. 

This is based on previous training on suitable images. Typical 

parameters that can be extracted for each particle are size, 

circularity, equivalent diameter, and Feret diameter. These 

parameters are tedious to extract by manual examination, but 

readily available after the particles have been identified and 

their two-dimensional shape has been determined. If a high 

number of particles is analysed, the corresponding distribution 

functions, averages, and standard deviations can be easily 

computed. In addition, an algorithm to separate overlapping 

particles was implemented. We demonstrate the capabilities of 

this method on a selection of images of metallic nanoparticles. 

Results and discussion 

We have implemented an autonomous pathway by which 

transmission electron microscopy (TEM) images of 

nanoparticles can be analysed in a fully automated way. This is 

based on the analysis of the TEM images to identify and extract 

individual particles, assisted by machine learning. The goal of 

the processing routine was to automatically extract shape- and 

size-related information of nanoparticles from TEM images. 

Figure 1 summarizes the different steps in this routine. The 

routine was programmed in MATLAB.28



  

 

  

 

 

Figure 1: Illustration of the TEM image processing routine. A typical speckle that was removed is labelled by a red circle.  

First, the program loads the image and extracts its pixel size 

from the image file (dm3 format; DigitalMicrograph files from 

Gatan, Inc.) with a routine from MATLAB file exchange.29 Next, 

the image is segmented by a trained neural network. From the 

resulting segmentation map, a binary particle segmentation 

map is created. The segmentation map is de-speckled to 

remove small mislabelled areas ("speckles") from the map. Each 

area with an equivalent diameter below 0.5 nm is considered as 

a speckle and removed. Likewise, holes in particle areas with a 

diameter below 0.5 nm are closed. Particles that cross the 

image boundary are cropped by definition, therefore they 

cannot be evaluated. Consequently, they are generally removed 

from the particle map and excluded from further analysis. From 

the remaining particle-based areas, individual particles are 

identified and analysed for their shape and size. From the 

dimensions of each particle, we can compute its area, circular 

equivalent diameter (=diameter of the circle having the same 

area), minimum and maximum Feret diameter, perimeter, and 

circularity (circularity = 4∙area∙π/Perimeter2). 

Two different options to deal with overlapping particles were 

implemented. This is important to avoid the misrepresentation 

of two overlapping particles as one single (and usually 

apparently distorted) particle, e.g. a peanut-shaped overlap of 

two spherical particles. Both options are based on measuring 

the convexity of particle regions as illustrated in Figure 2. The 

convexity is defined as the ratio of the perimeter of the convex 

hull of a particle to the actual perimeter of a particle. Thus, a 

particle with concave indentations or an agglomerate of two 

sphere-like particles have a convexity <1. Here, we considered 

particles with a convexity below 0.95 as non-convex and 

therefore consisting of overlapping particles, following the 

recent suggestion by Wang et al.30 

In the first option, when no separation is used, convexity is 

added as an output parameter so that overlapping particles can 

be identified within the dataset. The program also labels all 

particles that are below the convexity threshold as such in the 

dataset. This option is useful if the number and size of 

agglomerates in a given sample are of interest.  

The second option is to use dedicated algorithms to split 

overlapping particles. This was realized by an adaptation of the 

ultimate erosion of convex shapes (UECS) algorithm based on 

the description and MATLAB code by Park et al.16, 31 With this 

approach, particle regions are eroded until they exceed the 

convexity threshold. These eroded areas serve as markers for 

the singular particles which are then dilated back to their 

original size. The original outline is used as a mask. It is not 
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combined with a watershed as that would not account for the 

overlapping area. If the particle is again non-convex after the 

regrowing procedure, it will be discarded and excluded from 

further analysis. If the markers reach an area below 30 pixels or 

are smaller than 0.5 nm in equivalent diameter before 

surpassing the convexity threshold, they are discarded. This 

option enables a fully automated processing of overlapping 

particles and is implemented as the default option. The limits of 

30 pixels and/or 0.5 nm identified as suitable after analysing a 

number of images with the developed algorithm and visually 

inspecting the results for efficient particle separation.

 

 

Figure 2: Illustration of the implemented options to deal with overlapping particles and illustration of the erosion and dilation process in particle separation.  

After the completed analysis, all particle parameters are 

exported as xlsx or csv files. TEM images and the segmentation 

maps are finally exported as png files. The program can process 

single image files (dm3 format) as well as stacks of image files. 

The results can be saved as individual evaluation datasets for 

each image or combined in one evaluation dataset.  

In the following, we demonstrate the single evaluation steps 

with suitable examples. The separation of particles from the 

background is commonly denoted as segmentation. 

Representative data for a variety of metallic nanoparticles are 

shown in Figure 3. The network is able to segment nanoparticles 

of different metals and sizes. Note that these images always 

depict metallic nanoparticles which have a high electron 

contrast, even if they are ultrasmall (1-2 nm). Usually, the 

segmentation becomes increasingly difficult if the contrast 

becomes weaker and if the nanoparticles become smaller. High-

contrast images can often be segmented without the 

application of machine learning by standard image processing 

procedures (rendering, contrast variation), but the performance 

of image processing drops drastically for images with lower 

contrast or higher background noise. However, our machine 

learning approach showed the same performance for low-

contrast images as with high-contrast images. This illustrates 

the advantage of the machine learning approach over 

conventional image processing. 

 



  

 

  

 

Figure 3: Representative examples of the separation of metallic nanoparticles from the background (segmentation).  

A typical quantitative evaluation of ultrasmall gold 

nanoparticles of about 2 nm diameter is shown in Figure 4. The 

particle map shows all particles that were included in the 

analysis. The particle size distribution is expressed by equivalent 

diameter (2.1 ± 0.7 nm), as well as minimum (2.0 ± 0.7 nm) and 

maximum Feret diameter (2.4 ± 0.8 nm). A manual evaluation 

by a human reviewer is also given (2.0 ± 0.5 nm) and shows 

good agreement with the automated evaluation.  

 



  

 

  

 

Figure 4: Particle size distribution results (minimum and maximum Feret diameters and equivalent diameter) obtained by the automated image processing routine of a TEM image 

of ultrasmall gold nanoparticles together with a manual determination of the distribution of the particle equivalent diameters by a human evaluator for comparison.  

 

For a typical TEM image with a low degree of overlapping 

particles, this processing routine takes less than 15 seconds if 

the particle separation algorithm is used and less than 10 

seconds if only the convexity is evaluated but no particle 

separation is performed. For images with higher degree of 

overlap, the program execution takes less than 90 seconds if 

particle separation is applied by iterative erosion and dilation. 

These durations refer to an execution of the program on the 

same machine that was used for training the neural network 

(see methods for details). This is a significant time improvement 

compared to a manual inspection which takes about 30 minutes 

for a typical image. It also enables an unbiased and quick 

analysis of large data quantities. An option to analyse multiple 

images from different regions of one given sample is also 

implemented. This increases the number of analysed particles 

and improves the particle statistics. An example of such an 

evaluation is shown in Figure 5. The average equivalent 

diameter, its standard deviation, and the particle circularity 

were determined from 1,465 particles, i.e. a high number. Note 

that the particle-to-background contrast in these images was 

limited because the nanoparticles were ultrasmall (about 2 nm). 

Thus, classical image analysis routines usually fail in this 

evaluation. 

  



  

 

  

 

 

Figure 5: Example of an analysis of TEM images taken from multiple regions of one gold nanoparticle sample by the automated image processing routine and the accumulated results 

for equivalent diameter (2.5 ± 0.9 nm) and circularity (0.92 ± 0.06).  

While the network was trained on spherical particles, it was also 

able to segment particles with other morphologies such as 

cubes or octahedra as shown in Figure 6. For particles with a 

generic non-convex shape (Figure 6, left image) the separation 

routine obviously cannot be used. In that case the program can 

only evaluate images with no overlapping particles.  

 

 

Figure 6: Analysis of TEM images with different shapes of gold (left) and platinum (centre and right) nanoparticles.  

A limitation of the automated routine is the analysis of images 

with a high degree of particle overlap, as the particle separation 

routine used performs best for low to medium particle 

overlap.31 Figure 7 shows typical images to illustrate the 

performance of the routine for different degrees of particle 

overlap. While most of the segmented particle regions are 
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retained for all images, separation of particle regions with high 

degrees of overlap is more prone to errors and an 

overestimation of particle sizes.  

Another limitation for particle separation comes with particles 

that overlap in such a way that they have a convexity which is 

high enough to pass the convexity exclusion criteria of a 

minimum convexity of 0.95. For some particles this can be 

solved by increasing the convexity threshold. However, this can 

also lead to the wrongful exclusion of particles with 

indentations. In principle, particles can also overlap in such a 

way that even a higher convexity threshold would not lead to a 

successful separation. An example would be an ellipse resulting 

from two closely overlapping spheres. These particles are then 

counted as one even after the separation algorithm. We found 

that not much can be done against this problem. 

 

 

 

Figure 7: Examples of images of ultrasmall gold nanoparticles that can and cannot be properly evaluated due to different degrees of particle overlap. The segmentation image 

(middle) shows pixels in the foreground in yellow. The particle separation map (bottom) shows individually identified particles in blue. 

 

The overall performance of a trained neural network is 

generally expressed by accuracy, intersection over union (IoU), 

and DICE coefficient.32, 33 These metrics can be given as global 

or class-based metrics. The global accuracy describes the 

amount of correctly classified pixels given as true negatives (TN) 

and true positives (TP) in relation to the overall number of pixels 

which includes the false positives (FP) and false negatives (FN). 

The class-based accuracy does not include TN and FP. 
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IoU is defined as the amount of overlap between the ground 

truth and the segmentation map divided by their union. With 

respect to true and false positive and negative values, IoU is 

defined as follows: 
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The DICE coefficient is calculated as the union between the 

ground truth and the segmentation map weighed by factor two 

and then divided by the sum of the man and the segmentation 

map. 
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The network reached a final validation accuracy of 96.14% 

during training. All further performance metrics were calculated 

based on the test dataset. The global accuracy of the test 

dataset was 96.26% and therefore comparable with the 

validation accuracy. As the classes were unbalanced with 

around 80% of all pixels in the images being background, it is 

important to look into other metrics besides the global 

accuracy. Figure 8 shows the class accuracy as a normalized 

confusion matrix with the particle class showing a similar value 

to the global accuracy of 96.12%. Table 1 shows the IoU and 

DICE coefficient for the test dataset. Both have values above 

80% for the particle class and values above 95% for the 

background class, i.e. the programmed routine performed very 

efficiently. It outperformed other machine learning based 

approaches for analysing similar TEM images.15 

 

Figure 8: Normalized confusion matrix for the trained network on the test dataset, 

showing the percentage of pixels in a given class in the ground truth (True Class) being 

allocated to different classes by the network (Predicted Class).  

Table 1: Intersection over Union Score (IoU) and DICE coefficient of the trained network 

on the test dataset.  

 
IoU / % DICE coefficient / 

% 

Background 95.42 97.67 

Particle 83.00 90.71 

Experimental 

Methods 

Electron microscopy 

High-resolution transmission electron microscopy (TEM) was 

performed with an aberration-corrected FEI Titan transmission 

electron microscope equipped with a Cs-probe corrector (CEOS 

Company), operating at 300 kV.34 The nanoparticle dispersion 

was drop-cast on a copper grid, and coated with an ultrathin 

amorphous carbon film. Representative TEM images of metallic 

nanoparticles were used for training and analysis. 

 

Machine learning 

A deeplabv3+ network with a resnet-18 backbone was trained 

on TEM images to distinguish between nanoparticles and the 

background by semantic segmentation with a supervised 

learning approach.35, 36 The training was performed on 128 

manually labelled TEM images of a wide variety of nanoparticle 

samples of different metals and sizes. The dataset included 

images of ultrasmall nanoparticles that were in the size range of 

1 to 10 nm. Manual particle labelling and the determination of 

the equivalent particle diameters were performed by 

experienced human evaluators. 

Labelling was performed with MATLAB’s image labeller tool.37 

Training was performed in MATLAB with a deeplabv3+ network 

with a pretrained resnet-18 network as a backbone that is 

available from Mathworks35, 38 (see, e.g., Refs.27, 39 for general 

discussions on the application of CNNs in particle analysis in 

electron microscopy). As good results were obtained with these 

CNNs, other CNNs were not tested.  The full TEM images had a 

size of either 2048∙2048 pixels or 1024∙1024 pixels. To speed up 

training with only a small loss in image resolution, the images 

and ground truth images (labels) were sized down to an image 

size of 1024∙1024 pixels and then sliced into 256∙256 pixel tiles 

which were then used for training. Additionally, the full image 

was also included in the training data by reducing it to a 256∙256 

pixel image. This resulted in 2,176 labelled image slices. The 

manually labelled images were split into a training, a validation 

and a test dataset, respectively, in a ratio of 60:20:20. To 

enhance training by more variety in the images, data 

augmentation was applied with scaling, rotation, x- and y-axis 

reflection, brightness and contrast augmentation of the 

individual images. The validation loss and accuracy were 

checked every other epoch during training to monitor for 

overfitting.  

The semantic segmentation training was performed on a Dell 

Precision 7920 Tower equipped with an NVIDIA Quadro RTX 

5000. It was equipped with 32 GB RAM and an Intel® Xeon® 

Gold 6226R Processor. Training was performed for 120 epochs 

with a batch size of 30 and an initial learning rate of 0.01. The 

learning rate was decreased every 15 epochs by a learning rate 

drop factor of 0.75.  

The network performance was analysed by global and class 

accuracy, intersection over union score (IoU) and DICE Score 

(also known as F1 score).32, 33 

Conclusions 
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A machine learning approach for TEM data analysis creates 

more accurate and user-independent results and avoids human 

bias. High numbers of nanoparticles can be extracted from TEM 

images and automatically analysed. The presented automated 

analysis is significantly faster than a manual evaluation and 

allows the analysis of multiple images of one sample. This leads 

to more nanoparticles being analysed and a better statistical 

accuracy. Furthermore, the algorithm extracts multiple 

parameters for each particle, thus yielding more data about a 

particle than just the average core diameter. This routine and 

the trained neural network can also be used to analyse large 

datasets like in-situ datasets. We conclude that the application 

of machine learning techniques to two-dimensional TEM 

images, even with poor contrast, can considerably improve the 

statistical basis to characterize nanoparticle samples with 

respect to size and shape. 

As a general limitation of the analysis of TEM images, it must be 

emphasized that particles are almost always represented as 

two-dimensional projections in microscopy. Neither human 

trainers nor artificial intelligence are able to reconstruct data 

which are not known. For instance, the two-dimensional 

depiction of a circular particle is usually tacitly (and often 

unconsciously) transformed into a three-dimensional sphere. 

The fact that this circle could also be the two-dimensional 

projection of a circular platelet, a cylinder, or a disc-like object 

is often not considered. If all circular discs lay flat on the sample 

holder, they would also give a circular projection. Three-

dimensional shape information can only be gained if particles 

are imaged from different orientations. Tomography would be 

the method of choice. However, as this is time-consuming, it is 

usually applied only to individual particles. It is not possible to 

apply this method to very small nanoparticles on the ultrasmall 

length scale (1-2 nm). Thus, there is still a long way to go until 

we can assign particle populations to their full three-

dimensional properties. For now, the presented routine is a 

powerful tool for an automated analysis of two-dimensional 

TEM images of nanoparticles. 

Supplementary Information 

The code for the described procedures, denoted here with the 

acronym ANTEMA, including reference images, is available on 

GitHub at https://github.com/ngumb/ANTEMA. 
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