Automated analysis of transmission electron micrographs of
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Metallic nanoparticles were analysed with respect to size and shape by a machine learning approach. This involved a

separation of particles from the background (segmentation), a separation of overlapping particles, and the identification of

individual particles. An algorithm to separate overlapping particles, based on ultimate erosion of convex shapes (UECS), was

implemented. Finally, particle properties like size, circularity, equivalent diameter, and Feret diameter were computed for

each particle of the whole particle population. Thus, particle size distributions can be easily created based on the various

parameters. However, strongly overlapping particles are difficult and sometimes impossible to separate because of an a

priori unknown shape of a particle that is partially lying in the shadow of another particle. The program is able to extract

information from a sequence of images of the same sample, thereby increasing the number of analysed nanoparticles to

several thousands. The machine learning approach is well-suited to identify particles at only limited particle-to-background

contrast as it is demonstrated for ultrasmall gold nanoparticles (2 nm).

Introduction

Nanoparticles play a key role in materials science. As most
nanoparticle properties depend on the particle size and size
distribution, it is usually necessary to fully characterize a given
set of particles. Many methods are available that give particle
size distribution data, both in solid form (as powder) and in
dispersed form.1® However, shape-related parameters are
usually only accessible by microscopic techniques. In that case,
electron microscopy is the method of choice because light
microscopy usually does not provide a sufficient resolution.

For the application of nanoparticles and (nano-)fibres, e.g. in
consumer products, cosmetics, drugs, or in heterogeneous
catalysis, the particle shape plays a decisive role.”11 In
occupational and particle toxicology, rod-like
(nano)particles are considered to be potentially more harmful,

medicine

based on the case of asbestos where fibres cause strongly
upon inhalation.1214 Thus, nanoparticle
populations are usually visualized by electron microscopy,
followed by an extraction of their individual size- and shape-
related properties.

A detailed analysis of electron micrographs of nanoparticles is

adverse effects

often performed manually by human evaluators. This procedure
is tedious, time-consuming, and inaccurate. It may also involve
a considerable degree of human bias due to an unconscious
selection of "typical" nanoparticles, e.g. particles with the
"expected" size or the "desired" uniform shape. In the
literature, claims of allegedly uniform nanoparticle populations
after shape-specific syntheses, based on only a dozen depicted
nanoparticles, are not uncommon.

Computational for detecting analysing
micrographs of nanoparticles do exist, however for many of

methods and
them a considerable degree of manual input and fine-tuning of
parameters is needed. Furthermore, many of these techniques
fail for images with a low signal-to-noise ratio as it is the case
for some high-resolution TEM images and images acquired with
low beam intensity.1 16

Clearly, an objective method for a rapid nanoparticle analysis
from electron microscopic data is necessary. The rise of artificial
intelligence/machine learning/deep learning has considerably
enhanced our ability to train computers to recognize and
autonomously analyse particles. Machine learning techniques
have already been applied to electron microscopic images
where they usually outperform classical image analysis
approaches, especially when noisy images or overlapping
particles are involved!® 17-24 (see refs.2>-27 for recent reviews).

Here we present an automated method, based on machine
learning, that permits to analyse electron microscopic images
containing thousands of nanoparticles within a few seconds.
This is based on previous training on suitable images. Typical
parameters that can be extracted for each particle are size,
circularity, equivalent diameter, and Feret diameter. These
parameters are tedious to extract by manual examination, but
readily available after the particles have been identified and
their two-dimensional shape has been determined. If a high
number of particles is analysed, the corresponding distribution
functions, averages, and standard deviations can be easily
computed. In addition, an algorithm to separate overlapping
particles was implemented. We demonstrate the capabilities of
this method on a selection of images of metallic nanoparticles.

Results and discussion

We have implemented an autonomous pathway by which
microscopy (TEM) images of
nanoparticles can be analysed in a fully automated way. This is

transmission  electron
based on the analysis of the TEM images to identify and extract
individual particles, assisted by machine learning. The goal of
the processing routine was to automatically extract shape- and
size-related information of nanoparticles from TEM images.
Figure 1 summarizes the different steps in this routine. The
routine was programmed in MATLAB.28
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Figure 1: lllustration of the TEM image processing routine. A typical speckle that was removed is labelled by a red circle.

First, the program loads the image and extracts its pixel size
from the image file (dm3 format; DigitalMicrograph files from
Gatan, Inc.) with a routine from MATLAB file exchange.?® Next,
the image is segmented by a trained neural network. From the
resulting segmentation map, a binary particle segmentation
map is created. The segmentation map is de-speckled to
remove small mislabelled areas ("speckles") from the map. Each
area with an equivalent diameter below 0.5 nm is considered as
a speckle and removed. Likewise, holes in particle areas with a
diameter below 0.5 nm are closed. Particles that cross the
image boundary are cropped by definition, therefore they
cannot be evaluated. Consequently, they are generally removed
from the particle map and excluded from further analysis. From
the remaining particle-based areas, individual particles are
identified and analysed for their shape and size. From the
dimensions of each particle, we can compute its area, circular
equivalent diameter (=diameter of the circle having the same
area), minimum and maximum Feret diameter, perimeter, and
circularity (circularity = 4-area-n/Perimeter?).

Two different options to deal with overlapping particles were
implemented. This is important to avoid the misrepresentation
of two overlapping particles as one single (and usually
apparently distorted) particle, e.g. a peanut-shaped overlap of

two spherical particles. Both options are based on measuring
the convexity of particle regions as illustrated in Figure 2. The
convexity is defined as the ratio of the perimeter of the convex
hull of a particle to the actual perimeter of a particle. Thus, a
particle with concave indentations or an agglomerate of two
sphere-like particles have a convexity <1. Here, we considered
particles with a convexity below 0.95 as non-convex and
therefore consisting of overlapping particles, following the
recent suggestion by Wang et al.30

In the first option, when no separation is used, convexity is
added as an output parameter so that overlapping particles can
be identified within the dataset. The program also labels all
particles that are below the convexity threshold as such in the
dataset. This option is useful if the number and size of
agglomerates in a given sample are of interest.

The second option is to use dedicated algorithms to split
overlapping particles. This was realized by an adaptation of the
ultimate erosion of convex shapes (UECS) algorithm based on
the description and MATLAB code by Park et al.16 31 With this
approach, particle regions are eroded until they exceed the
convexity threshold. These eroded areas serve as markers for
the singular particles which are then dilated back to their
original size. The original outline is used as a mask. It is not
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combined with a watershed as that would not account for the
overlapping area. If the particle is again non-convex after the
regrowing procedure, it will be discarded and excluded from
further analysis. If the markers reach an area below 30 pixels or
are smaller than 0.5 nm in equivalent diameter before
surpassing the convexity threshold, they are discarded. This
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option enables a fully automated processing of overlapping
particles and is implemented as the default option. The limits of
30 pixels and/or 0.5 nm identified as suitable after analysing a
number of images with the developed algorithm and visually
inspecting the results for efficient particle separation.
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Figure 2: lllustration of the implemented options to deal with overlapping particles and illustration of the erosion and dilation process in particle separation.

After the completed analysis, all particle parameters are
exported as xIsx or csv files. TEM images and the segmentation
maps are finally exported as png files. The program can process
single image files (dm3 format) as well as stacks of image files.
The results can be saved as individual evaluation datasets for
each image or combined in one evaluation dataset.

In the following, we demonstrate the single evaluation steps
with suitable examples. The separation of particles from the
background s segmentation.
Representative data for a variety of metallic nanoparticles are

commonly denoted as
shown in Figure 3. The network is able to segment nanoparticles
of different metals and sizes. Note that these images always
depict metallic nanoparticles which have a high electron

contrast, even if they are ultrasmall (1-2 nm). Usually, the
segmentation becomes increasingly difficult if the contrast
becomes weaker and if the nanoparticles become smaller. High-
contrast images segmented without the
application of machine learning by standard image processing

can often be

procedures (rendering, contrast variation), but the performance
of image processing drops drastically for images with lower
contrast or higher background noise. However, our machine
learning approach showed the same performance for low-
contrast images as with high-contrast images. This illustrates
the advantage of the machine learning approach over
conventional image processing.
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Figure 3: Representative examples of the separation of metallic nanoparticles from the background (segmentation).

A typical quantitative evaluation of ultrasmall gold
nanoparticles of about 2 nm diameter is shown in Figure 4. The
particle map shows all particles that were included in the

analysis. The particle size distribution is expressed by equivalent

diameter (2.1 £ 0.7 nm), as well as minimum (2.0 £ 0.7 nm) and
maximum Feret diameter (2.4 £ 0.8 nm). A manual evaluation
by a human reviewer is also given (2.0 £ 0.5 nm) and shows
good agreement with the automated evaluation.
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Figure 4: Particle size distribution results (minimum and maximum Feret diameters and equivalent diameter) obtained by the automated image processing routine of a TEM image
of ultrasmall gold nanoparticles together with a manual determination of the distribution of the particle equivalent diameters by a human evaluator for comparison.

For a typical TEM image with a low degree of overlapping
particles, this processing routine takes less than 15 seconds if
the particle separation algorithm is used and less than 10
seconds if only the convexity is evaluated but no particle
separation is performed. For images with higher degree of
overlap, the program execution takes less than 90 seconds if
particle separation is applied by iterative erosion and dilation.
These durations refer to an execution of the program on the
same machine that was used for training the neural network
(see methods for details). This is a significant time improvement
compared to a manual inspection which takes about 30 minutes
for a typical image. It also enables an unbiased and quick

analysis of large data quantities. An option to analyse multiple
images from different regions of one given sample is also
implemented. This increases the number of analysed particles
and improves the particle statistics. An example of such an
evaluation is shown in Figure 5. The average equivalent
diameter, its standard deviation, and the particle circularity
were determined from 1,465 particles, i.e. a high number. Note
that the particle-to-background contrast in these images was
limited because the nanoparticles were ultrasmall (about 2 nm).
Thus, classical image analysis routines usually fail in this
evaluation.
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Figure 5: Example of an analysis of TEM images taken from multiple regions of one gold nanoparticle sample by the automated image processing routine and the accumulated results
for equivalent diameter (2.5 + 0.9 nm) and circularity (0.92 + 0.06).

While the network was trained on spherical particles, it was also  generic non-convex shape (Figure 6, left image) the separation
able to segment particles with other morphologies such as routine obviously cannot be used. In that case the program can
cubes or octahedra as shown in Figure 6. For particles with a  only evaluate images with no overlapping particles.

TEM image

Segmentation map
after full routine

Figure 6: Analysis of TEM images with different shapes of gold (left) and platinum (centre and right) nanoparticles.

A limitation of the automated routine is the analysis of images overlap.3! Figure 7 shows typical images to illustrate the
with a high degree of particle overlap, as the particle separation performance of the routine for different degrees of particle
routine used performs best for low to medium particle overlap. While most of the segmented particle regions are
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retained for all images, separation of particle regions with high
degrees of overlap is more prone to errors and an
overestimation of particle sizes.

Another limitation for particle separation comes with particles
that overlap in such a way that they have a convexity which is
high enough to pass the convexity exclusion criteria of a
minimum convexity of 0.95. For some particles this can be
solved by increasing the convexity threshold. However, this can
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also lead to the wrongful exclusion of particles with
indentations. In principle, particles can also overlap in such a
way that even a higher convexity threshold would not lead to a
successful separation. An example would be an ellipse resulting
from two closely overlapping spheres. These particles are then
counted as one even after the separation algorithm. We found
that not much can be done against this problem.
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Figure 7: Examples of images of ultrasmall gold nanoparticles that can and cannot be properly evaluated due to different degrees of particle overlap. The segmentation image

(middle) shows pixels in the foreground in yellow. The particle separation map (bottom) shows individually identified particles in blue.

The overall performance of a trained neural network is
generally expressed by accuracy, intersection over union (loU),
and DICE coefficient.32 33 These metrics can be given as global
or class-based metrics. The global accuracy describes the
amount of correctly classified pixels given as true negatives (TN)
and true positives (TP) in relation to the overall number of pixels

which includes the false positives (FP) and false negatives (FN).

The class-based accuracy does not include TN and FP.
TP+ TN

global accuracy = TP + FPT-il-)TN +FN
class accuracy = TP+ FN

(1)
(2)



loU is defined as the amount of overlap between the ground
truth and the segmentation map divided by their union. With
respect to true and false positive and negative values, loU is

defined as follows:
TP

- - @ 3
TP + FP + FN (3)
The DICE coefficient is calculated as the union between the

ground truth and the segmentation map weighed by factor two
and then divided by the sum of the man and the segmentation
map.

IoU

DICE = TP (4)
T 2TP+FP+FN

The network reached a final validation accuracy of 96.14%
during training. All further performance metrics were calculated
based on the test dataset. The global accuracy of the test
dataset was 96.26% and therefore comparable with the
validation accuracy. As the classes were unbalanced with
around 80% of all pixels in the images being background, it is
important to look into other metrics besides the global
accuracy. Figure 8 shows the class accuracy as a normalized
confusion matrix with the particle class showing a similar value
to the global accuracy of 96.12%. Table 1 shows the loU and
DICE coefficient for the test dataset. Both have values above
80% for the particle class and values above 95% for the
background class, i.e. the programmed routine performed very
efficiently. It outperformed other machine learning based
approaches for analysing similar TEM images.15
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Figure 8: Normalized confusion matrix for the trained network on the test dataset,
showing the percentage of pixels in a given class in the ground truth (True Class) being
allocated to different classes by the network (Predicted Class).

Table 1: Intersection over Union Score (loU) and DICE coefficient of the trained network
on the test dataset.

loU /% DICE coefficient /
%
Background 95.42 97.67
Particle 83.00 90.71
Experimental

Methods
Electron microscopy

High-resolution transmission electron microscopy (TEM) was
performed with an aberration-corrected FEI Titan transmission
electron microscope equipped with a Cs-probe corrector (CEOS
Company), operating at 300 kV.34 The nanoparticle dispersion
was drop-cast on a copper grid, and coated with an ultrathin
amorphous carbon film. Representative TEM images of metallic
nanoparticles were used for training and analysis.

Machine learning

A deeplabv3+ network with a resnet-18 backbone was trained
on TEM images to distinguish between nanoparticles and the
background by semantic segmentation with a supervised
learning approach.3> 36 The training was performed on 128
manually labelled TEM images of a wide variety of nanoparticle
samples of different metals and sizes. The dataset included
images of ultrasmall nanoparticles that were in the size range of
1 to 10 nm. Manual particle labelling and the determination of
the equivalent particle diameters were performed by
experienced human evaluators.

Labelling was performed with MATLAB’s image labeller tool.3”
Training was performed in MATLAB with a deeplabv3+ network
with a pretrained resnet-18 network as a backbone that is
available from Mathworks3® 38 (see, e.g., Refs.27. 39 for general
discussions on the application of CNNs in particle analysis in
electron microscopy). As good results were obtained with these
CNNs, other CNNs were not tested. The full TEM images had a
size of either 2048:2048 pixels or 1024-1024 pixels. To speed up
training with only a small loss in image resolution, the images
and ground truth images (labels) were sized down to an image
size of 1024-1024 pixels and then sliced into 256-256 pixel tiles
which were then used for training. Additionally, the full image
was also included in the training data by reducing it to a 256-256
pixel image. This resulted in 2,176 labelled image slices. The
manually labelled images were split into a training, a validation
and a test dataset, respectively, in a ratio of 60:20:20. To
enhance training by more variety in the images, data
augmentation was applied with scaling, rotation, x- and y-axis
reflection, brightness and contrast augmentation of the
individual images. The validation loss and accuracy were
checked every other epoch during training to monitor for
overfitting.

The semantic segmentation training was performed on a Dell
Precision 7920 Tower equipped with an NVIDIA Quadro RTX
5000. It was equipped with 32 GB RAM and an Intel® Xeon®
Gold 6226R Processor. Training was performed for 120 epochs
with a batch size of 30 and an initial learning rate of 0.01. The
learning rate was decreased every 15 epochs by a learning rate
drop factor of 0.75.

The network performance was analysed by global and class
accuracy, intersection over union score (loU) and DICE Score
(also known as F1 score).32.33

Conclusions



A machine learning approach for TEM data analysis creates
more accurate and user-independent results and avoids human
bias. High numbers of nanoparticles can be extracted from TEM
images and automatically analysed. The presented automated
analysis is significantly faster than a manual evaluation and
allows the analysis of multiple images of one sample. This leads
to more nanoparticles being analysed and a better statistical
accuracy. Furthermore, the algorithm extracts multiple
parameters for each particle, thus yielding more data about a
particle than just the average core diameter. This routine and
the trained neural network can also be used to analyse large
datasets like in-situ datasets. We conclude that the application
of machine learning techniques to two-dimensional TEM
images, even with poor contrast, can considerably improve the
statistical basis to characterize nanoparticle samples with
respect to size and shape.

As a general limitation of the analysis of TEM images, it must be
emphasized that particles are almost always represented as
two-dimensional projections in microscopy. Neither human
trainers nor artificial intelligence are able to reconstruct data
which are not known. For instance, the two-dimensional
depiction of a circular particle is usually tacitly (and often
unconsciously) transformed into a three-dimensional sphere.
The fact that this circle could also be the two-dimensional
projection of a circular platelet, a cylinder, or a disc-like object
is often not considered. If all circular discs lay flat on the sample
holder, they would also give a circular projection. Three-
dimensional shape information can only be gained if particles
are imaged from different orientations. Tomography would be
the method of choice. However, as this is time-consuming, it is
usually applied only to individual particles. It is not possible to
apply this method to very small nanoparticles on the ultrasmall
length scale (1-2 nm). Thus, there is still a long way to go until
we can assign particle populations to their full three-
dimensional properties. For now, the presented routine is a
powerful tool for an automated analysis of two-dimensional
TEM images of nanoparticles.

Supplementary Information

The code for the described procedures, denoted here with the
acronym ANTEMA, including reference images, is available on
GitHub at https://github.com/ngumb/ANTEMA.
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